※ 引述《joulin (joulin)》之銘言:
: 先釐清一件事情 1人出局 二壘有人 跟無人出局 二壘有人的跑法絕對不同
: 無人出局二壘有人 飛球有機會被接 通常都是先站在壘上 才可以偷一個壘包
: 這樣一人出局三壘有人 一個高飛犧牲打都能得分
: 可是1人出局 二壘有人 就不太一樣了 因為即便你偷了一個壘包
: 2人出局三壘有人 那對於攻擊方來說 跟2人出局二壘有人並沒有太大的差異
↑
只會馬後跑卻充滿思考盲點就是上面這種想法
要講機率、講大數法則、講期望值最大,首先你要先知道甚麼才是常態
確實那一球相當深遠,有接不到的可能性沒錯
但是回歸常理去思考
正常的深遠右外野飛球如果接不到的話,球滾遠後幾乎就是當然清壘
陽不管在二壘上或三壘上都能散步回本壘得分
問題就出在這球好死不死,沒接到,但RF瞬間找到球並立刻回傳
難道你機率這麼會算,要去事先考慮深遠飛球「沒接到,但剛好掉在身邊」的機率?
正常來講根本不該去想這個情況
那種球要嘛落地變成簡單清壘安打,漫步回本壘;要嘛被NP接殺,可以拚個上三壘
回二壘觀望的判斷並沒有爭議空間
馬後炮真的太多餘了....