Re: [閒聊] 機率與統計

作者: iampig951753 (姆沙咪豬)   2022-08-01 13:57:08
其實他說的完全沒錯
公正硬幣來說
是有可能出現十次正或是十次反的
機率差不多千分之一
機率這種東西樣本越大
越接近原本估算的百分比
所以才會有所謂的信賴區間
你做一千次去計算實際機率
可能不會是千分之一
但是丟一億次
實際機率肯定會非常非常貼近千分之一
只要假設機率是對的
意思就是說 當你實驗的次數越多
機率只會往準確的時候部分修正
因為事件總會發生
不可能永遠都沒發生
所以樣本每增加一個
碰到事件的可能也會增加
夜路走多了會碰到鬼這句話
就是在講述機率的真理
機率不是靠賽 是科學
不要以為1%就只是1%
當你打算做一萬次
對你來說發生一次的可能性早就不是1%了
之前我就有提過了 獨立事件的誤區
就是忘記把機率加起來算
如果有個實驗只有1%會死
你做300次還活著就給你一億
跟另一個實驗50%會死但是做一次沒死就給一億
你選哪一個?
獨立機率的謬論支持者的邏輯來說
他應該選1%的
因為1%小於50% 每次都是獨立的 懂?
這次1%下次當然也是1%
那鬼才選死亡率大50倍的
笑死 幼稚園白讀
作者: dodo52woman (嘟嘟左右衛門)   2022-08-01 13:59:00
大數法則
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:00:00
如果前面連續不中這件事情已經發生了, 後面肯定會連續中獎修正回來 ,這就是真理因為機率是科學不是玄學
作者: kaj1983   2022-08-01 14:03:00
原來機率還有保底?
作者: rhox (天生反骨)   2022-08-01 14:04:00
建議你發一篇論文
作者: cidcheng (c'est la vie)   2022-08-01 14:05:00
你知道第一個實驗存活機率是99% 300次方=5%嗎...
作者: iuytjhgf (′‧ω‧‵)   2022-08-01 14:05:00
你老師看到這篇應該會口吐白沫
作者: homeboy528 (歐陽)   2022-08-01 14:05:00
用大數法則來否定獨立性還滿有創意的,嗯
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:05:00
真的要說的話 就是連續不中跟連續中獎都是會發生的先遇到後遇到的問題 樣本一大 就是會遇到 而且樣本越大 越貼近真實 所以事實上的確就是一直沒遇到的話就把數量拉高 那離事件發生就是會越來越接近
作者: bowplayer (So Deep)   2022-08-01 14:06:00
那個例子是期望值的問題,跟原本的題目不一樣啊
作者: a8521abcd (Cage)   2022-08-01 14:06:00
賭徒謬誤
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:06:00
@iuytjhgf 恩 什麼論點都提不出來只會口吐白沫是可憐
作者: cidcheng (c'est la vie)   2022-08-01 14:07:00
會遇到不代表會反彈,你先骰出10次正面,那也過了
作者: npc776 (二次元居民)   2022-08-01 14:07:00
(╮′_>`)<如果你的課金是無上限的話 當然可以 顆顆
作者: Lb1916 (冷靜的魚)   2022-08-01 14:07:00
有沒有數學系要回文討論機率啊?,感覺會變成有趣的討論。
作者: kirbycopy (鐵面騎士)   2022-08-01 14:07:00
哪個獨立機率的支持者選300次的一定是被當的支持者吧
作者: twosheep0603 (兩羊)   2022-08-01 14:07:00
人生第一次聽到大數法則還能修正獨立機率的
作者: schula (mabi-weaver)   2022-08-01 14:07:00
因為獨立事件所以我彈射世界都只能保底換...哭死
作者: iuytjhgf (′‧ω‧‵)   2022-08-01 14:07:00
前4行 哪位數學老師教你這樣算數的? 還要人幫你訂正
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:07:00
@bowplayer 笑死 本來就是期望值才是真實 不然什麼是真實 芽吹就說越多次越可能 這就是期望值會主動接近的事實
作者: iuytjhgf (′‧ω‧‵)   2022-08-01 14:08:00
自己的作業自己寫 可憐
作者: kirbycopy (鐵面騎士)   2022-08-01 14:08:00
換個問題 300次那個實驗前面有人幫你做了299次都沒死你只要做1次就好 你選哪個?
作者: bowplayer (So Deep)   2022-08-01 14:08:00
原本的比較像是300次已經做了200次沒事,剩下要不要繼續做。如果剩不到50次都還沒事,那選1%是比50%一次好吧
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:08:00
越多次越可能 這就是為啥要 算期望值 而不是每次都覺得自己不會遇到
作者: iuytjhgf (′‧ω‧‵)   2022-08-01 14:09:00
後面講的東西根本就是你自己以為的哲學了 笑死
作者: bowplayer (So Deep)   2022-08-01 14:09:00
呃....期望值是看整件事的期望結果,不是什麼時候觀察都一樣
作者: a8521abcd (Cage)   2022-08-01 14:10:00
這完全是玄學好嗎XD 你在那邊拋硬幣各事件會互相影響那隔壁也有人拋勒
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:10:00
每一次都是獨立事件1% 做多次一點也不會比較容易遇到啊 那怕甚麼?做三百次怕什麼不是1%嗎?還是現在又要證明芽吹說的是對的了?
作者: bowplayer (So Deep)   2022-08-01 14:11:00
對,如果從"一開始"的時候觀察,可以假設前面都沒中那機率會在後半發生。但是"已經"經歷一段既成事實後,剩下的不能拿前面來抵啊XD這就是獨立機率在說明的事情(笑?)
作者: cidcheng (c'est la vie)   2022-08-01 14:11:00
你先搞清楚事前跟事後好嗎
作者: knight831022 (knight831022)   2022-08-01 14:12:00
難怪有賭徒謬論
作者: homeboy528 (歐陽)   2022-08-01 14:12:00
照你的論點,所有活到30歲還每天出門沒出車禍的都該小心了,差不多該車禍了
作者: cidcheng (c'est la vie)   2022-08-01 14:12:00
你講硬幣的例子是已經發生連續正面,為什麼實驗又變事前
作者: dodo52woman (嘟嘟左右衛門)   2022-08-01 14:12:00
不會比較容易(0),但可能發生的次數一直在增加耶兄弟,期望值=np
作者: dodo52woman (嘟嘟左右衛門)   2022-08-01 14:13:00
事前期望值 還有事後期望值
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:14:00
所以我就問你 為啥做三百次就比一次50%還危險了?是不是三百次的發生機率早就大於50%?可是…咦獨、獨立 1%怎麼可能變成大約50% 機率不能加起來
作者: cidcheng (c'est la vie)   2022-08-01 14:15:00
因為你事前未知的狀況下做300次,活下來的機率只有5%但是做完299次沒事,第300次沒事的機率還是99%
作者: iuytjhgf (′‧ω‧‵)   2022-08-01 14:15:00
照你的哲學就不應該有人活過40歲
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:15:00
這下完了 明明堅持獨立事件 還在笑芽吹 結果自己卻知道次數越多越可能遇到
作者: cidcheng (c'est la vie)   2022-08-01 14:16:00
不會因為前面299次讓這次變成超容易爆炸,你說的反彈
作者: kirbycopy (鐵面騎士)   2022-08-01 14:16:00
獨立機率="一次"實驗中事件的發生不會影響另"一次"實驗
作者: rhox (天生反骨)   2022-08-01 14:16:00
有人獨立跟連續事件分不清楚欸
作者: homeboy528 (歐陽)   2022-08-01 14:16:00
所以到底是哪個學校哪個老師讓你的統計可以過得XDDDDD
作者: ospsosps (os)   2022-08-01 14:17:00
請問您的統計老師是否常請假?
作者: kirbycopy (鐵面騎士)   2022-08-01 14:17:00
說要做300次的
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:17:00
太可悲了 怎麼變成這樣?如果不會越來越可能遇到 那請你安心肯定的選下去1%的選項
作者: guogu   2022-08-01 14:17:00
你是不是不知道什麼是獨立事件...
作者: bowplayer (So Deep)   2022-08-01 14:17:00
順便說一下這個機率也不是用加的是乘的,加的是期望值
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:18:00
因為另一個選項可是有50%機率會死啊
作者: Louta   2022-08-01 14:18:00
獨立跟連續是兩種情況 你怎麼會摻在一起看
作者: kirbycopy (鐵面騎士)   2022-08-01 14:18:00
芽吹是人家做了299次後 覺得下一次一定會死阿所以才會被笑 但是某方面來說 久留美繼續那樣玩確實總
作者: cidcheng (c'est la vie)   2022-08-01 14:19:00
好吧,你繼續當相信機率會反彈的賭徒比較快樂
作者: kirbycopy (鐵面騎士)   2022-08-01 14:19:00
有一天會死
作者: uranus013 (Mara)   2022-08-01 14:21:00
http://i.imgur.com/V2cad11.jpg 我覺得你說得對
作者: iampig951753 (姆沙咪豬)   2022-08-01 14:23:00
我再講個更簡單的比喻你把機率1趴的事件給一百萬個人去做他們都各做一百次發生率1%的事情大部分的人都會在接近一百次的時候事件才會發生所以在接近一百次的時候事件還沒發生的人 對他們來說就是事件快要發生了 這就是鐵一般的事實
作者: xyoras (wkh)   2022-08-01 14:24:00
你說試一億次「肯定」會貼近期望值就錯了啊
作者: Louta   2022-08-01 14:25:00
怎麼覺得你打一整串結果是在講廢話
作者: kirbycopy (鐵面騎士)   2022-08-01 14:25:00
那以你的理論 1%的事我做99次後還沒發生 我第100次做的時候發生的機率是多少?
作者: arrenwu (鍵盤的戰鬼)   2022-08-01 14:26:00
"對他們來說就是事件快要發生了" <----No
作者: cidcheng (c'est la vie)   2022-08-01 14:27:00
沒有接近100次的時候才發生這種事啦 XDDD
作者: stardust7011   2022-08-01 14:27:00
應該是100次裡面會中一次,中哪次還要另外談
作者: wtfpan0621 (潘潘)   2022-08-01 14:29:00
頭好痛…原po到底有沒有學過機率
作者: iuytjhgf (′‧ω‧‵)   2022-08-01 14:30:00
原PO學的不是機率學 是自我流玄學 保底保過頭了
作者: micky801114 (君瑾)   2022-08-01 14:30:00
看完整段 你先了解一下獨立事件好嗎
作者: guogu   2022-08-01 14:30:00
我希望他沒學過 不然他的老師哭暈在廁所還要找人去救
作者: storyo11413 (小便)   2022-08-01 14:31:00
把條件機率混進來,這篇混亂了,機率不是修正是統計
作者: micky801114 (君瑾)   2022-08-01 14:31:00
哦 還有條件機率
作者: Grothendieck (A. Grothendieck)   2022-08-01 14:31:00
草 你先想一下什麼是公正硬幣吧
作者: storyo11413 (小便)   2022-08-01 14:32:00
299次沒事這機率很低但已發生,那你下一次還是99%...
作者: phoenix286 (糰子大家族)   2022-08-01 14:37:00
共三小
作者: mon818nom (屍體)   2022-08-01 14:37:00
小丑
作者: lay10521 (小伊達)   2022-08-01 14:43:00
請問你相信地平說嗎?
作者: s891234 (嘟嚕咑)   2022-08-01 14:46:00
作者: xsw15963 (尼特族剋星)   2022-08-01 14:47:00
知道什麼叫做條件機率嗎?
作者: OldYuanshen (聊齋異說)   2022-08-01 14:49:00
久留美都是真的
作者: weltschmerz (威爾特斯克˙悶死)   2022-08-01 14:51:00
我快笑死 這篇XDDD
作者: guava664251 (芭樂)   2022-08-01 14:53:00
好 了 啦
作者: sunshinecan (陽光罐頭)   2022-08-01 14:53:00
試推論這篇是反串的機率...
作者: tomet (沁)   2022-08-01 14:56:00
你要不要去找你數學老師問一下你講的東西到底對不對?
作者: raye68od (兔肉料理)   2022-08-01 14:58:00
299次沒事代表賭到了那僅有5%的生存機率剩下最後一次跟前面299次之間是獨立的,沒事的機率
作者: john95582003   2022-08-01 14:59:00
李白是文組的,不懂機率統計很正常
作者: raye68od (兔肉料理)   2022-08-01 15:00:00
就是99%阿...
作者: hsiehfat (Okami)   2022-08-01 15:01:00
原po你還是回去問問你的機率論老師吧…
作者: rich22084 (Siro)   2022-08-01 15:09:00
通篇跟屎一樣還那麼大聲真好意思
作者: holmes006 (zerglooky)   2022-08-01 15:09:00
你不懂什麼是獨立事件,做一萬次成功機率1%,統計上總成功次數會跟100次差不多,不代表你做到99次失敗下一次就成功機會很高,每一次都是獨立事件
作者: k960608 (霧羽‧浪沙)   2022-08-01 15:11:00
講錯話不可恥 不認錯就不行了
作者: a8418635 (agogo)   2022-08-01 15:15:00
三百次是統計 不是單次機率吧?
作者: XFarter (劈哩啪啦碰碰碰)   2022-08-01 15:19:00
笑死,結果整層樓看下來只有一樓跟少數幾個人懂原 Po 想講什麼,大家還噓的這麼開心w雖然我也還在學統計機率,但古典機率的定義和跟統計機率是不一樣的東西,古典的機率是考慮每次採樣都是「公正」的樣本,但後者則否,每一次的採樣都是有一定程度的變因存在,以至於需要大數法則等定理。
作者: cidcheng (c'est la vie)   2022-08-01 15:26:00
大數法則是一個結果,不是讓你拿來預測下一次抽牌的
作者: Hosimati (星詠み)   2022-08-01 15:26:00
笑死,講大數法則,要不要看最後一段有多好笑
作者: bob2096tw (瘋狂魔鴉)   2022-08-01 15:26:00
說真的問題不是漲跌根本不是機率相同事件嗎?為啥算50%算這麼高興
作者: Hosimati (星詠み)   2022-08-01 15:28:00
你講大數法則,樣本數越大,算術平均會越趨近期望值,那300次的樣本足夠大會更趨近於期望值=你期望值會死3次
作者: Casionn (芒果)   2022-08-01 15:28:00
推聰明見解
作者: holmes006 (zerglooky)   2022-08-01 15:28:00
還在學就別出來丟人現眼
作者: Hosimati (星詠み)   2022-08-01 15:29:00
幼稚園讀太久,所以覺得要選1%300次?
作者: holmes006 (zerglooky)   2022-08-01 15:29:00
Ok大數法則,樣本數只取300也太少
作者: hsiehfat (Okami)   2022-08-01 15:29:00
原po把期望值和獨立事件混在一起講就是魚目混珠了
作者: holmes006 (zerglooky)   2022-08-01 15:30:00
學過隨機過程就會知道
作者: Hosimati (星詠み)   2022-08-01 15:32:00
還有,大數法則講的其實是樣本數越高,算術平均有越高的機率接近期望值,而非一定會更靠近期望值
作者: As08807 (As08807)   2022-08-01 15:37:00
你學的應該叫感覺機率,要來了要來了來的機率是幾%? 不知道,感覺很高
作者: madokamagika (まどか☆マギカ)   2022-08-01 15:38:00
遇到機率沒學好的人 我一律建議和他對賭
作者: KiwiSoda01 (奇異果汽水)   2022-08-01 15:46:00
哭啊 義務教育失敗
作者: zjing   2022-08-01 15:49:00
已知的部分跟未知的部分機率是獨立的 不互相影響但是未知的部分可以一起算 這樣有沒有比較好理解
作者: XFarter (劈哩啪啦碰碰碰)   2022-08-01 15:51:00
大數法則就是如 @Hosimati 所說的,但我想原 Po 想講的真的不至於得到這麼多噓==
作者: arrenwu (鍵盤的戰鬼)   2022-08-01 15:53:00
光這文章的第一句 絕對是被噓爛的
作者: XFarter (劈哩啪啦碰碰碰)   2022-08-01 15:56:00
啊 這樣想就合理了 確實第一句話有點過頭==
作者: OldYuanshen (聊齋異說)   2022-08-01 15:57:00
有這麼多噓跟他平常推文風格也很有關係你要確定他想表達的和你的想法真的有關而不是逆風討噓你還要花時間幫他作註解
作者: XFarter (劈哩啪啦碰碰碰)   2022-08-01 15:58:00
我是只看內文滿認真(?)回的就認真回ㄌ,沒特別a他ID
作者: class30183   2022-08-01 16:03:00
舉例爛死,以大數實驗去貼近表定機率,50次小計後要延長實驗到第100次之內有成功過的期望機率也才從39.5%+24%上去,光次數100分兩段比較有成功過者之比率,前後半段+39.5跟+24叫作大部分成功案例出現在接近100時?只因曾成功者的失敗不被主觀記入,持續失敗者的子集持續變小才會有這種只觀察實際連續失敗者數量越來變少=母體成功機率變高好棒棒的以井窺天蠢結論。
作者: papertim (吃紙小鹿)   2022-08-01 16:06:00
大哥,你畫個樹狀圖就知道你後面哪個實驗的說法多荒唐了
作者: ralph409409   2022-08-01 16:07:00
一知半解的咖 回去重讀統計搞清楚當你在表達什麼
作者: ifyoutry (馬H)   2022-08-01 16:13:00
不是樣本多就會有股力量幫你修正,而是會把極端結果稀釋
作者: wsgg25482 (wsgg)   2022-08-01 16:13:00
這人根本連1%連續300次沒發生的機率都不會算吧還在那邊幻想懂機率的人會選那個選項古典機率都不會還在那邊大談信賴區間 先去把幼稚園讀完還是你以為大家算機率都跟你一樣只會憑感覺 不按計算機
作者: isaswa (黒丸)   2022-08-01 16:20:00
作者: cssc9cssc9 (Eoea)   2022-08-01 16:45:00
不看回文我還以為你在反串條件機率學了嗎小朋友
作者: thesun0731 (johnnywalker)   2022-08-01 16:57:00
重新定義機率
作者: nolimitpqq (voidblaze)   2022-08-01 17:05:00
你先回去讀書 好嗎
作者: sariel0322 (sariel)   2022-08-01 17:11:00
……你的機率是體育老師教的嗎?
作者: Ariadust (Ariadust)   2022-08-01 17:12:00
建議原PO回去找一下自己高中數學老師
作者: bassmaster (三餐吃泡麵然後暴斃)   2022-08-01 17:12:00
你可以google條件機率
作者: knight77 (オニオンナイト)   2022-08-01 17:16:00
你是不是高中沒畢業
作者: zack867 (心裡有佛看人便是佛)   2022-08-01 17:24:00
300次完沒死的機率只有5%
作者: afking (掛網中)   2022-08-01 17:28:00
笑死,原來是東方神秘力量,還修正咧
作者: redsa12 (哈吉米)   2022-08-01 17:40:00
獨立事件的謬論 顆顆 made my day
作者: JamesChen (James)   2022-08-01 17:49:00
還好你統計老師不是我

Links booklink

Contact Us: admin [ a t ] ucptt.com