開發平台(Platform): (Ex: VC++, GCC, Linux, ...)
g++ on Raspberry Pi 3
額外使用到的函數庫(Library Used): (Ex: OpenGL, ...)
OpenCV OpenMP
問題(Question):
在加速一些追蹤的演算法,在雙核的筆電上以驗證過,速度變1.8倍
但在4核心的樹莓派3上卻也只大約變2倍
餵入的資料(Input):
可平行化的迴圈(如程式碼)
預期的正確結果(Expected Output):
速度變為原來的3倍多
錯誤結果(Wrong Output):
效能不符合預期
程式碼(Code):(請善用置底文網頁, 記得排版)
vector<double> vSumRadio(sampleBoxNum, 0);
#pragma omp parallel for num_threads(4)
for (int j=0; j< sampleBoxNum; j++)
{
double eSumRadioTmp = 0;
double eTmp1 = 0;
double eTmp2 = 0;
eSumRadioTmp = 0.0f;
for (int i = 0; i<featureNum; i++)
{
double ePosTmp = 0, eNegTmp = 0;
eTmp1 = (sampleValue[i][j]-Pos[i])*(sampleValue[i][j]-Pos[i]);
eTmp2 = (sampleValue[i][j]-Neg[i])*(sampleValue[i][j]-Neg[i]);
ePosTmp = exp(eTmp1/-(2.0f*sigmaPos[i]*sigmaPos[i]
+1e-30))/(sigmaPos[i] + 1e-30);
eNegTmp = exp(eTmp2/-(2.0f*sigmaNeg[i]*sigmaNeg[i]+
1e-30))/(sigmaNeg[i]+1e-30);
eSumRadioTmp += log(ePosTmp + 1e-30) - log(eNegTmp + 1e-30);
}
vSumRadio[j] = eSumRadioTmp;
}
補充說明(Supplement):
1. 原本沒用 num_threads(4),用omp_get_thread_num()抓出來的執行緒只有0跟1
2. omp_get_num_procs() 抓出來的核心數確定為4核心