剛剛小弟用積分法之傳統算法計算,還是沒辦法求解,
這題傳統算法求不出來?似乎一定要用到奇函數去求解,
但是撓度方向卻相反,不知道哪裡錯誤了?
麻煩版上前輩們不吝嗇指導,謝謝!
※ 編輯: pigheadthree (61.224.66.28), 05/03/2014 21:32:14
傳統的:(請分段計算)
x
BC段 ╴╴ w ←┐
╭─ ↓↓↓ ↓y
Mx1│ ▆▆
╰→ C Mx1 = 1/2*w*x1^2
x1 (0≦x1≦L/2)
←─┤
AB段 ╴╴╴╴ w
╭─ ↓↓↓↓↓
Mx2│ ▆▆▆▆▆▆
╰→ B C Mx2 = 1/2*w*L*x2-1/8*w*L^2
x2 (L/2≦x2≦L)
←─────┤
EIv1'' = 1/2*w*x1^2 │EIv2'' = 1/2*w*L*x2-1/8*w*L^2
EIv1' = 1/6*w*x1^3+C1 │EIv2' = 1/4*w*L*x2^2-1/8*w*L^2*x2+C3
EIv1 = 1/24*w*x1^4+C1x1+C2 │EIv2 = 1/12*w*L*x2^3-1/16*w*L^2*x2^2+C3x2+C4
B.C.
v2'(L) = 0 → C3 = -1/8*w*L^3
v2(L) = 0 → C4 = 5/48*w*L^4
則 v2 = [1/12*w*L*x2^3-1/16*w*L^2*x2^2-1/8*w*L^3*x2+5/48*w*L^4]/EI
v1'(L/2) = v2'(L/2) → C1 = -7/48*w*L^3
v1(L/2) = v2(L/2) → C2 = 41/384*w*L^4
則 v1 = 1/24*w*x1^4-7/48*w*L^3*x1+41/384*w*L^4]/EI
C點變位 v1(0) = 41*w*L^4/384EI (↓)
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄#