Re: [爆卦] 『最高規格的邀請』後續

作者: kim123boy (秋風五丈原)   2014-05-27 01:10:46
代Hyuui說明
作者Hyuui (修) 看板Math
標題[分析] Zeta函數和Gamma函數的一些小知識
時間Tue May 27 00:48:54 2014
Chatterly在八卦板提到一些關於複變函數論的結果,但他說的東西有些錯誤。為了避免
他誤導別人,我想拉回來Math板上解說一下,順便補充一些我覺得有趣的東西。
──
#1JTsjw0U (Gossiping)
http://www.ptt.cc/bbs/Gossiping/M.1400335226.A.01E.html
//Gamma解析延拓出去整個到複數平面,所有整數點包括 1 都是奇點//
#1JWWbT8- (Gossiping)
http://www.ptt.cc/bbs/Gossiping/M.1401031005.A.23E.html
//解析延拓是每一個整數點都不可解析而不是你說的z=1//
──
解說如下:
1.
對於實部大於1的複數s,我們定義Zeta函數如下:
Zeta {s} = Sum_n=1~∞ {1/n^s}
Zeta函數的原始定義域是{s | Re(s) > 1}。經過解析延拓(analytic continuation),可
以拓展為在 {s | s ≠ 1} 的複數平面上的解析函數。
而在 s=1 該點上,即為著名的調和級數。
Zeta {1} = 1 + 1/2 + 1/3 + 1/4 + ...
我之前在某篇文章中提過,17世紀的Pietro Mengoli就證明出調和級數發散。不過我後來
看到另一篇蔡聰明教授的文章,他說:「在1350年左右,N. Oresme(約1323~1382)證
明了調和級數發散, 這是歷史上第一個發散級數的例子。」
這個證明的思路相當簡單,有些讀者在高中時可能就已經學過了。
1 + 1/2 +1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + ...
1/2 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) + ...
第二個級數的每個括號內的值都等於1/2,無窮多個1/2加起來顯然發散。注意到第一個級
數的每項都大於第二個級數,故第一個級數發散。
因此,Zeta函數在 s=1 是無法解析延拓的。
解析延拓的Zeta函數在s等於負整數的值,有一個方便的公式可以計算:
Zeta {-n} = -B_(n+1) / (n+1)
其中 B_(n+1) 為Bernoulli number。
由於 B_n 在 {n | n為奇數,且n>1} 的值都是0,故 Zeta {-2n} = 0
──
2.
對於實部大於0的複數s,我們定義Gamma函數如下:
Gamma {s} = Int_0~∞ {t^(s-1) / e^t} dt
Gamma函數在s等於正整數的值非常容易計算,因為有以下公式:
Gamma {n} = (n-1)!
Gamma函數的原始定義域是{s | Re(s) > 0}。經過解析延拓(analytic continuation),
可以拓展為在 {s | s ≠ 0 or 負整數} 的複數平面上的解析函數。
在 {s | s = 0 or 負整數} 這些點上,Gamma函數是發散的,但我們可以使用留數定理計
算留數。
Res {Gamma, -n} = (-1)^n / n!
──
3.
關於使用解析延拓的Zeta函數求出「1 + 2 + 3 + ... = -1/12」,可參考這篇文章。
1+2+3+…=-1/12? | 法蘭克的數學世界
http://frankliou.wordpress.com/2014/05/18/123-112/
不過嚴格說起來,解析延拓後的Zeta函數,在額外拓展的定義域上已經不是原本的
「Sum_n=1~∞ {1/n^s}」形式了,所以其實也沒有「Zeta {-1} = 1 + 2 + 3 + ...」這回
事。
我建議把「1 + 2 + 3 + ... = -1/12」當作物理學家們的一個有趣把戲就好,它並
不是嚴謹的數學結果。
至於「1 + 1 + 1 + ... = -1/2」,不嚴謹地說,則是解析延拓的 Zeta {0} 的值,它在
弦論中有些應用。但請注意,不要把Zeta函數和Gamma函數搞混了。雖然我們知道,Zeta
函數和Gamma函數相乘起來有個很漂亮的關係。
Gamma {s} * Zeta {s} = Int_0~∞ {t^(s-1) / e^t-1} dt
這個關係成立在Zeta函數和Gamma函數原始定義域的交集 {s | Re(s) > 1} 上。
而且這個特殊關係無法改變以下事實:
1. Zeta函數在 {s | s ≠ 1} 發散。
2. Gamma函數在 {s | s = 0 or 負整數} 發散。
在整個複數平面上,我們比較常使用的是Riemann functional equation。
Zeta {s} = 2^s * π^{s-1} * sin {πs/2} * Gamma {1-s} * Zeta {1-s}
我們可以由sin {πs/2}這項再次看出:Zeta {-2n} = 0
──
以上是一些關於Zeta函數和Gamma函數的小說明,希望大家能弄清楚這些概念。
作者: alvar (( ′-`)y-~)   2014-05-27 01:12:00
恩恩
作者: hunfu (糟糕大叔)   2014-05-27 01:12:00
靠北,我到底看了什麼....考研究所前知道,現在都還給老師了
作者: a1052026 (永恆孤寂)   2014-05-27 01:12:00
現在這篇跟本來的標題好像已經無關了吧
作者: sdlong (sdlong)   2014-05-27 01:12:00
快推!不然人家會以為我們看不懂 XDD
作者: sobiNOva (星星徹夜未眠)   2014-05-27 01:12:00
看不懂啦...這篇到底跟這串有什麼關聯啦XDDD
作者: senior (希尼爾)   2014-05-27 01:13:00
這跟什麼邀請有什麼關係
作者: obov (來噓蒼真)   2014-05-27 01:14:00
你竟然敢嗆物理崩潰哥 不怕他崩潰給你看ㄇ
作者: senior (希尼爾)   2014-05-27 01:15:00
射惹哥obov到底要跳槽了沒 越南老仔還在嗎
作者: soma (窗邊一直線)   2014-05-27 01:16:00
.....每個字我都懂. 如果分開來看的話.
作者: JackTheRippe (WRYYYYYYYYYYYYYYYYYYYYY)   2014-05-27 01:26:00
立論清晰,脈絡分明,甲上 93/05/27
作者: dream01212 (魚老闆)   2014-05-27 02:51:00
這種東西在社會上的應用在於?

Links booklink

Contact Us: admin [ a t ] ucptt.com