小妹是鍵盤big data專家、溫拿、30cm、E cup、高富帥、勝利組,
Big data與雲端計算是現今經費匯聚的所在。
八卦是也有人認為big data被炒作了(但不是像下面報導的原標題認為big data是妄想,感謝2樓
bmka大)。
麥可喬丹(Michael Jordan)是美國國家科學院、美國國家工程院、美國文理科學院院士,以下節錄他的
訪談:
http://spectrum.ieee.org/robotics/artificial-intelligence/machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts
縮網址:http://tinyurl.com/kdq9pgd
Michael Jordan:
... if people use data and inferences they can make with the data without any
concern about error bars, about heterogeneity, about noisy data, about the sampling
pattern, about all the kinds of things that you have to be serious about if you’re
an engineer and a statistician—then you will make lots of predictions, and there’s
a good chance that you will occasionally solve some real interesting problems. But
you will occasionally have some disastrously bad decisions. And you won’t know the
difference a priori. You will just produce these outputs and hope for the best.
麥可喬丹:
如果人們使用從資料衍伸的資料和推論,卻毫不在意誤差、異質性、雜音、取樣方法、與工程師
和統計學家必須在意的各種事情,那麼你將會做出許多預測,有很大的機會你偶爾會解決掉一些
真正有趣的問題,但你也偶爾會做出災難性的決策,而你事先無法分辨這兩者,你只能產生種種
預測,然後祈禱。
And so that’s where we are currently. A lot of people are building things hoping
that they work, and sometimes they will. And in some sense, there’s nothing wrong
with that; it’s exploratory. But society as a whole can’t tolerate that; we can’t
just hope that these things work. Eventually, we have to give real guarantees. Civil
engineers eventually learned to build bridges that were guaranteed to stand up. So
with big data, it will take decades, I suspect, to get a real engineering approach,
so that you can say with some assurance that you are giving out reasonable answers
and are quantifying the likelihood of errors.
而這就是我們的現況了。很多人打造許多東西,希望他們可以運作,而有時候它們真的能,某種
意義上,這並沒有錯-這是探索,但整個社會不能容許這樣,我們不能只是希望事情自然順利,
我們最後總是要給出一些真正的保證。土木工程師最終學會如何建造保證不垮的橋,我預期對big
data來說,我們還要再經過幾十年才能得到真正工程上的方法,以使你能夠某種程度地保證你給
出了合理的答案、並量化了錯誤的可能性。
... [恕刪]
Spectrum: What adverse consequences might await the big-data field if we remain on
the trajectory you’re describing?
IEEE Spectrum:若我們持續在您說的軌道上前進,對big data領域可能會帶來什麼不利的後果?
Michael Jordan: The main one will be a “big-data winter.” After a bubble, when
people invested and a lot of companies overpromised without providing serious
analysis, it will bust. And soon, in a two- to five-year span, people will say, “The
whole big-data thing came and went. It died. It was wrong.” I am predicting that.
It’s what happens in these cycles when there is too much hype, i.e., assertions not
based on an understanding of what the real problems are or on an understanding that
solving the problems will take decades, that we will make steady progress but that
we haven’t had a major leap in technical progress. And then there will be a period
during which it will be very hard to get resources to do data analysis. The field
will continue to go forward, because it’s real, and it’s needed. But the backlash
will hurt a large number of important projects.
麥可喬丹:主要是big data的漫長冬天。當人們投資了、許多公司在沒有認真分析下過度吹噓了
,就會爆。很快地,在接著的兩到五年內,人們會說「Big data這個東西來了又走了,它死了,
它是錯的」,這是我的預測。這是炒作過度後的循環,炒作是指所做的斷言不是基於對真實問題
的理解、未了解到解決這些問題將需要數十年,而我們的確有穩定進展,但非技術上的跳躍式進
展。之後會有一段時間很難拿到資料分析的資源挹注,整個領域仍會持續前進,因為它是真的、
被需要的,但反作用力將傷害許多重要的計畫。
※ 引述《google8494 (好男人不做嗎?)》之銘言:
: 1.媒體來源:
: 聯合報
: 2.完整新聞標題:
: 東吳簽約國研院 研究大數據
: 3.完整新聞內文:
: 東吳大學的巨量資料管理學院今年9 月正式開課,將成為全世界第一個培養分析巨量資料
: 人才的學院。東吳除了已和法國達梭公司、美商賽仕電腦軟體產學合作外,昨天也與國家
: 實驗研究院簽約,雙方將就提升畢業生就業率、災害風險管理等議題,進行巨量資料庫分
: 析,為政府提供建言。
: 東吳校長潘維大表示,從商業經營、政府決策,甚至颱風預測、傳染病源分析等,都需要
: 用巨量資料分析來降低傷害,國研院是國內唯一的大數據整合平台,雙方產學合作對教學
: 、研究都會有突破性貢獻。
: 國研院院長羅清華說,國研院積極與大學校院產學合作,在大數據研究方面,東吳是第一
: 家,將為國內研究開創里程碑。
: 巨資學院執行長許晉雄則指出,東吳將先與國研院高速網路與計算中心合作,以巨量資料
: 及政府開放資料(Open Data)研究,再結合國網中心的高速運算、資料儲存空間,朝「
: 青年就業」、「高齡化社會」、「災害保險」3個方向投入研究,協助政府解決問題。
: 4.完整新聞連結 (或短網址):
: http://udn.com/news/story/6904/643102
: 5.備註:
: 東吳好好搞它的文法商就好了,弄個自己根本沒能力弄的東西何苦咧?