[問卦] 有K理論的八卦嗎

作者: yw1002 (kenny)   2018-05-27 15:22:12
http://www.books.com.tw/products/CN10806345?loc=P_004_052
代數K理論在代數拓撲、數論、代數幾何和算子理論等現代數學各個領域中的作用越來越
大。這門學科的廣泛性往往使人感覺望而生畏。本書以1990年秋天Maryland大學講義為基
礎,不僅為數學領域研究生提供很好的學習代數K理論的基本知識,也講述其在各個領域
的應用。全書結構完整,了解代數基礎知識、基本代數拓撲和幾何拓撲知識就可以完全讀
懂這本書。該書也涉及到不少代數拓撲、拓撲代數和代數數論的知識。最後一章簡明地介
紹了循環同調以及其與K理論的關系。目次︰環的K0群;環的K1群;範疇的K0、K1群,
MilnorK2群;QuillenK理論和+-結構;循環同調及其與K理論的關系。
另外關於K理論在物理學上的應用:
https://en.wikipedia.org/wiki/K-theory_(physics)
This conjecture, applied to D-brane charges, was first proposed by Minasian &
Moore (1997). It was popularized by Witten (1998) who demonstrated that in
type IIB string theory arises naturally from Ashoke Sen's realization of
arbitrary D-brane configurations as stacks of D9 and anti-D9-branes after
tachyon condensation.
維騰等人猜想弦論從D膜空間中的快子凝聚產生
Such stacks of branes are inconsistent in a non-torsion Neveu–Schwarz (NS)
3-form background, which, as was highlighted by Kapustin (2000), complicates
the extension of the K-theory classification to such cases. Bouwknegt &
Varghese (2000) suggested a solution to this problem: D-branes are in general
classified by a twisted K-theory, that had earlier been defined by Rosenberg
(1989).
D膜可用K理論來分類
作者: GaussQQ (亮)   2018-05-27 15:25:00
zeta function的special value都有跟k group有關係 很有趣當初要構造k3以上的 耗費不少苦心 那篇文章在annals 作者還得fields medal的樣子
作者: yw1002 (kenny)   2018-05-27 15:29:00
哪作者?
作者: GaussQQ (亮)   2018-05-27 15:29:00
臺大有老師開過k theoryDaniel Quillen我也只道皮毛 有錯請更多更正

Links booklink

Contact Us: admin [ a t ] ucptt.com