Re: [商管] 微積分

作者: a016258 (憨)   2015-01-21 21:05:39
※ 引述《haha79 (奶昔大哥)》之銘言:
: http://miupix.cc/pm-DGEOL5
: 如圖,第十題的弧長怎麼算?
: 好幾個同學解不出
: 求解,非常謝謝
√x + √y = √a
4 4
x = a* cos t , y = a * sin t
π/2 6 2 6 2
arc length = ∫ sqrt ( 16* a^2 * cos t sin t + 16 a^2 sin t cos t ) dt
0
π/2
= ∫ 4a cos t sint * sqrt( cos^4 t + sin^4 t ) dt ( u = sin^2 t )
0
1
= ∫ 2a sqrt( 2u^2 - 2u + 1 ) du
0
1
= ∫ 2a √2 √[(u- 1/2)^2 + 1/4 ] du u - 1/2 = tan y / 2
0
π/4 3
= ∫ a √2 / 2 * sec y dy
-π/4
π/4 3
= ∫ √2 a sec y dy
0
π/4
= √2 /2 a * ( sec y tan y + ln | sec y + tan y | ) | (*)
0
= √2/2 a * ( √2 + ln | √2 + 1 | )
3
(*) ∫ sec x dx = 0.5 * ( sec x tan x + ln| sec x + tan x | )

Links booklink

Contact Us: admin [ a t ] ucptt.com