[問題] IMO 2008 day1

作者: boggart0803 (幻形怪)   2008-07-16 23:15:03
Problem 1
Let H be the orthocenter of an acute-angled triangle ABC.
The circle G_A centered at the midpoint of BC and passing
through H intersects the sideline BC at points A_1 and A_2.
Similarly, define the points B_1, B_2, C_1, C_2.
Prove that six points A_1, A_2, B_1, B_2, C_1, C_2 are concyclic.
Problem 2
(i) If x, y and z are three real numbers, all different
from 1, such that xyz=1, then prove that Σ(x^2/(x-1)^2)>=1
(ii) Prove that equality is achieved for infinitely many
triples of rational numbers x, y and z.
Problem 3
Prove that there are infinitely many positive integers n
such that n^2+1 has a prime divisor greater than 2n+sqrt(2n)
作者: myflame (原來隱起來了)   2008-07-17 00:30:00
疑~哪邊有修改@_@
作者: Dawsen (好友名單不見了啦...)   2008-07-17 02:52:00
學弟加油
作者: boggart0803 (幻形怪)   2008-07-17 08:12:00
小小錯字XD
作者: Dawsen (好友名單不見了啦...)   2008-07-20 11:51:00
第二題蠻難的,等號成立部分除了硬湊還有別的解法嗎?
作者: boggart0803 (幻形怪)   2008-07-20 16:59:00
找a小題算幾的成立條件??
作者: LimSinE (r=e^theta)   2008-07-26 16:55:00
2.(b)其實是常規題

Links booklink

Contact Us: admin [ a t ] ucptt.com