[問題] IMO 2013 in Colombia Day 2

作者: FAlin (TRANSFORM/marvelousroad)   2013-07-25 10:10:28
4. Let ABC be an acute triangle with orthocenter H, and let W be apoint on
the side BC, between B and C. The points M and N are the feet of the
altitudes drawn from B and C, respectively. ω_1 is the circumcircle of
triangle BWN, and X is a point such that WX is a diameter of ω_1.
Similarly, ω_2 is the circumcircle of triangle CWM, and Y is a point
such that WY is a diameter of ω_2. show that the points X, Y, and H are
collinear.
5. Let Q>0 be the set of all rational numbers greater than zero. Let
f: Q>0 → R be a function satisfying the following conditions:
(i) f(x)f(y) ≧ f(xy) for all x,y ∈ Q>0,
(ii) f(x+y) ≧ f(x) + f(y) for all x,y ∈ Q>0
(iii) There exists a rational number a>1 such that f(a) = a
Show that f(x) = x for all x∈Q>0.
6. Let n≧3 be an integer, and consider a circle with n+1 equally spaced
points marked on it. Consider all labellings of these points with the
numbers 0,1,..., n such that each label is used exactly once; two such
labellings are considered to be the same if one can be obtained from
the other by a rotation of the circle. A labelling is called beautiful
if, for any four labels a<b<c<d with a+d=b+c, the chord joining the
points labelled a and d does not intersect the chord joining the points
labelled b and c.
Let M be the number of beautiful labellings and let N be the number of
ordered pairs (x,y) of positive integers such that x+y≦n and
gcd(x,y)=1.
Prove that M = N+1.
作者: Dawsen (好友名單不見了啦...)   2013-07-25 10:53:00
有請學長分析難度
作者: JGU ( )   2013-07-26 00:31:00
5. 證到恆正, 遞增. 後面不會 XD
作者: cmrafsts (喵喵)   2013-07-26 00:46:00
4沒難度5正常1小時6MARKING SHIT裱人
作者: cmrafsts (喵喵)   2013-07-26 00:51:00
17分是可以拿到的
作者: Dawsen (好友名單不見了啦...)   2013-07-26 05:31:00
我覺得2,3,5比1,4更直接. 6想不出來 如果金牌線>35再重想XD
作者: Dawsen (好友名單不見了啦...)   2013-07-26 07:13:00
JGU學長是不是還有一個條件沒用?
作者: cmrafsts (喵喵)   2013-07-26 13:12:00
如果有恆正遞增那應該也同時做出,f(整數)>=自己,就快了
作者: hahaj6u4503 (風雲。月)   2013-07-26 13:32:00
6的給分標準一向很摳@@ 感覺今年23兩題是關鍵,第二題
作者: hahaj6u4503 (風雲。月)   2013-07-26 13:33:00
感覺會卡掉一些人,金牌線可能又不高了
作者: cmrafsts (喵喵)   2013-07-26 22:54:00
我看目前協調分數感覺會是15~16-22~23-30~31
作者: Dawsen (好友名單不見了啦...)   2013-07-27 09:42:00
看目前的部份分數 台灣可能有3~4金!
作者: LimSinE (r=e^theta)   2013-07-31 07:41:00
JGU可得1分

Links booklink

Contact Us: admin [ a t ] ucptt.com