※ 引述《rareone (拍玄)》之銘言:
: http://imgur.com/a/9WUtP
: 在看具體數學的時候看到這種方塊式子令人眼睛為之一亮
: 我也想在寫講義的時候插入這類的圖
: 可是又不想直接引用圖片
: 像這類的圖,以我目前對latex的認知 關鍵字難找
: 懇請大家給我一些意見 關鍵字也好 拜託了 >_<
: 找到我要的答案 會發100p幣(稅前)作為一點小心意,謝謝
在 Knuth 老大排版的時候是這樣處理的:
【定義符號與指令】
\unitlength=3pt
\def\domi{\beginpicture(0,2)(0,0) % identity
\put(0,0){\line(0,1){2}}
\endpicture}
\def\domI{\beginpicture(0,2)(0,0) % identity when isolated
\put(0,-.1){\line(0,1){2.2}}
\endpicture}
\def\domv{\beginpicture(1,2)(0,0) % vertical without left edge
\put(1,0){\line(0,1){2}}
\put(0,0){\line(1,0){1}}
\put(0,2){\line(1,0){1}}
\endpicture}
\def\domhh{\beginpicture(2,2)(0,0) % two horizontals without left edge
\put(2,0){\line(0,1){2}}
\put(0,0){\line(1,0){2}}
\put(0,1){\line(1,0){2}}
\put(0,2){\line(1,0){2}}
\endpicture}
\def\Domh{\beginpicture(3,1)(-.5,0) % horizontal, stand-alone
\put(2,0){\line(0,1){1}}
\put(0,0){\line(0,1){1}}
\put(0,0){\line(1,0){2}}
\put(0,1){\line(1,0){2}}
\endpicture}
\def\Domv{\beginpicture(2,2)(-.5,0) % vertical, stand-alone
\put(0,0){\line(0,1){2}}
\put(1,0){\line(0,1){2}}
\put(0,0){\line(1,0){1}}
\put(0,2){\line(1,0){1}}
\endpicture}
【實際用在排版】
The null tiling $\,\domI\,$,
which is the multiplicative identity for our combinatorial arithmetic,
plays the part of~$1$, the usual multiplicative identity;
and $\domi\domv+\domi\domhh$ plays~$z$.
So we get the expansion
\begindisplay
{\hbox{\domI}\over\domI-\domi\domv-\domi\domhh}
&=\domI+(\,\domi\domv+\domi\domhh\,)+
(\,\domi\domv+\domi\domhh\,)^2+
(\,\domi\domv+\domi\domhh\,)^3+\cdots\cr
&=\domI+(\,\domi\domv+\domi\domhh\,)+
(\,\domi\domv\domv+\domi\domv\domhh+\domi\domhh\domv+\domi\domhh\domhh\,)\cr
&\qquad+(\,\domi\domv\domv\domv+\domi\domv\domv\domhh
+\domi\domv\domhh\domv+\domi\domv\domhh\domhh
+\domi\domhh\domv\domv+\domi\domhh\domv\domhh
+\domi\domhh\domhh\domv+\domi\domhh\domhh\domhh\,)+\cdots\,.\cr
\enddisplay
This is $T$, but the tilings are arranged in a different order than
we had before. Every tiling appears exactly once in this sum;
for example, $\domi\domv\domhh\domhh\domv\domv\domhh\domv$
appears in the expansion of $(\,\domi\domv+\domi\domhh\,)^7$.
We can get useful information from this infinite sum by compressing it
down, ignoring details that are not of interest. For example, we
can imagine that the patterns become unglued and that the individual dominoes
commute with each other; then a term like
$\domi\domv\domhh\domhh\domv\domv\domhh\domv$ becomes $\Domv^4\Domh^6$,
because it contains four verticals and six horizontals. Collecting
like terms gives us the series
\begindisplay
T = \domI+\Domv+\Domv^2+\Domh^2+\Domv^3+2\Domv\Domh^2+\Domv^4+3\Domv^2\Domh^2
+\Domh^4+\cdots\,.
\enddisplay
The $2\Domv\Domh^2$ here represents
the two terms of the old expansion,
\domi\domv\domhh\ and~\domi\domhh\domv\kern1pt, that
have one vertical and two horizontal dominoes;
similarly $3\Domv^2\Domh^2$
represents the three terms
\domi\domv\domv\domhh\kern1pt, \domi\domv\domhh\domv\kern1pt, and
\domi\domhh\domv\domv\kern1pt.
We're essentially treating \Domv\ and~\Domh\ as ordinary (commutative)
variables.