[試題] 101-1 夏俊雄 常微分方程導論 第六次小考

作者: Malzahar (虛空先知)   2015-02-13 09:45:40
課程名稱︰常微分方程導論
課程性質︰必修
課程教師︰夏俊雄
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰2012/12/11
考試時限(分鐘):
試題 :
ODE QUIZ 6 12/11/2012
1. Find the range of μ ∈ R at which the van der Pol equation
u'' - μ(1 - u^2)u' + u = 0
has time periodic solutions.
2. Find the inverse Laplace transform for each of the following functions.
2 3 5(s + 1)
f(s) = ────── + ────── + ──────
(s + 2)^4 s^2 + 16 s^2 + 2s + 5
3s + 1
g(s) = ─────────.
(s^2 - 4s + 20)
3. Find the general power series solution for the Airy's equation
y'' - xy = 0, -∞ < x < ∞.
What is the radius of convergence of the solution you obtain?
4. Do you think the following equations have periodic solutions? Prove or
disprove it.
x'' + x - x^2 = 0,
x'' + x^3 + x^4 = 0.

Links booklink

Contact Us: admin [ a t ] ucptt.com