[試題] 103-2 容志輝 微積分甲下 第四次小考

作者: eddy1021 (eddy)   2015-06-15 21:05:16
課程名稱︰微積分甲下
課程性質︰大一必修
課程教師︰容志輝
開課學院:工學院
開課系所︰電機系、材料系
考試日期(年月日)︰2015/06/15
考試時限(分鐘):50 分鐘
試題 :
===============================================================================
103-2 Calculus class-2 4th test
2 2
1. Consider the vector field: F(x,y) = (3 + 2xy)i + (x - 3y )j
(a) Show that F is conservative by finding a potential function for it.
(b) Evaluate the line integral ∫ F.dr where C is the curve given by
C
t t
r(t) = e sin(t) i + e cos(t) j 0 <= t <= π
x
2. Evaluate ∮ e [ (1-cos(y))dx - (y-sin(y))dy ], C is the boundary of
C
0 <= x <= π, 0 <= y <= sin(x) oriented counterclockwise.
2 2
3. Consider F(x,y,z) = -y i + x j + z k
(a) Find curl F
(b) Evaluate ∫ F.dr, where C is the curve of intersection of the plane
C
2 2
y + z = 2 and cylinder x + y = 1.
4.
1 √3
(a) consider r(t) = (─(1 + cos(t)) , ──(1 + cos(t)) , sin(t) ), where
2 2
π
0 <= t <= ─, find the centroid of r(t).
2
(b) consider r(t,u) = ( (1+cos(t))sin(u) , (1+cos(t))cos(u) , sin(t) ), where
π
0 <= t <= ─, 0 <= u <= 2π, find the surface area of r.
2
================================== 試題完 ===================================

Links booklink

Contact Us: admin [ a t ] ucptt.com