[試題] 108-2 余正道 線性代數二 第二次小考

作者: t0444564 (艾利歐)   2020-04-16 12:08:43
課程名稱︰線性代數二
課程性質︰數學系大一必修
課程教師︰余正道
開課學院:理學院
開課系所︰數學系
考試日期︰2020年04月10日(五)
考試時限:11:20-11:45,共25分鐘
試題 :
1. Let V be a finite-dimensional inner product space. If T and U are linear
operators on V, we wrtie T < U if U - T is a positive operator. Prove or
disprove
(a) (7%) If T < U and U < S, then T < S.
(b) (7%) If T < 0 and U < 0, then TU > 0.
2. (8%) Show the following fourth order Hilbert matrix is positive definite.
[ 1 1/2 1/3 1/4 ]
H4 = [ 1/2 1/3 1/4 1/5 ].
[ 1/3 1/4 1/5 1/6 ]
[ 1/4 1/5 1/6 1/7 ]
3. (8%) Let V be the polynomial function space of degree less than 2020
together with the 0-polynomial over |R equipped the inner product
1
(p|q) = ∫p(x)q(x)dx.
0
1
Define a linear functional L by L(p) = ∫p(x)dx for p∈V. For any
0
non-singular linear operator T on V, prove that there exists q∈V such that
L(p) = (Tp|q).
(Hint: You can use the result of Assignment 4 without proof but you need to
write the statement which you use.)

Links booklink

Contact Us: admin [ a t ] ucptt.com