[評價] 109-1 陳俊全 分析導論一

作者: Akkusaii3741 (烤雞好吃)   2021-01-27 02:03:15
若是通識課程評價,請用 [通識] 分類,勿使用 [評價] 分類
標題範例:[通識] A58 普通心理學丙 林以正 (看完後請用ctrl+y刪除這兩行)
※ 本文是否可提供臺大同學轉作其他非營利用途?(須保留原作者 ID)
(是/否/其他條件):
哪一學年度修課:
ψ 授課教師 (若為多人合授請寫開課教師,以方便收錄)
陳俊全
λ 開課系所與授課對象 (是否為必修或通識課 / 內容是否與某些背景相關)
數學系
δ 課程大概內容
第1週 9/15,9/17
0. Introduction -problems arising from calculus; new topics:
0.1.real numbers and completeness
0.2 what is infinity?
0.3 topology of the Euclidean space: Riemann integral and compactness
0.4 uniform convergence of functions
0.5 differentiation in R^n
0.6 Solve a system of non-linear equations:- Inverse and Implicit Function The
orems
0.7 Lebesgue's Theorem for integrals
0.8 Fourier series
1. The real number system and the Euclidean space
1.1 Sets and Functions:
- power set of A, product of A and B
- domain, target, range of a function, one-to-one, onto
1.2 Origin of number concept
- Piraha people in the Amazon rainforest
- Research on infants
1.3 Number system: natural numbers, integers, rational numbers
第2週 9/22,9/24
1.4 Ordered Fields
- addition axioms, multiplication axioms and order axioms
- sequence and limit: uniqueness of limits, sandwich lemma, limits of a
sum and a product
- Cauchy sequence
- Axiom of completeness
第3週 9/29,10/01
Basic properties of Cauchy sequences
Axioms of a complete ordered field
第4週 10/06,10/08
1-5 Construction of a complete ordered field
1-5-1 three approaches: infinite decimals, Cauchy sequences and Dedekind cuts
1-5-2 Cauchy sequence approach:
- S=the set of all rational Cauchy sequences
- an equivalence relation on S and the corresponding equivalence classes
- addition and multiplication on the equivalence classes
第5週 10/13,10/15
1-5-2 Cauchy sequence approach:
- order on the equivalence classes
- Cauchy sequences in the space of the equivalence classes
-the equivalent classes together with the addition, multiplication and order f
orms a complete ordered field.
第6週 10/20,10/22
-Theorem: There exists a "unique" complete ordered field, called the real numb
er system.
- Monotone sequence property (MSP)
-sup, inf and the least upper bound property (LUBP)
第7週 10/27,10/29
-Theorem: The three versions of completeness (CSP)+(AP), (MSP) and (LUBP) are
equivalent.
1-6 limsup and liminf
第8週 11/03,11/05
- more properties and applications of limsup and liminf,
1-7 Cantor's theory of infinity
- Definition of card A=card B and card A < card B
- finite, countable and uncountable
- an infinite subset of a countable set is countable
- card N = card Q < card R = card RxR=card P(N), Cantor's diagonal method
- card A < card P(A)
- existence of an algebraic number
第9週 11/10,11/12
- Schroder-Bernstein Theorem
- continuum hypothesis: Godel and Cohen
1-8 Some "paradoxes" about real numbers
- a number of all knowledge
- Pi is a normal number?
Borel's theorem: Almost every real number is normal.
- Richard's paradox
1-9 Complex numbers
1-10 Euclidean space
- norm, metric, inner product, Schwarz's inequality
Chapter 2 Topologies of Metric Spaces
2-1 Metric space: definition and examples
第10週 11/17,11/19
Midterm examination
2-2 Open sets and interior of a set
第11週 11/24,11/26
2-3 Closed sets, accumulation points, closure of a set
2-4 Boundary of a set
2-5 Sequences and limits
2-6 Completeness of a metric space
第12週 12/01,12/03
Chapter 3 Compact sets
3-1. Examples: the difference between I= [0,1] and I=(0,1]; consider continuou
s function on I
3-2 Sequentially compact: bisection process and bounded sequence; Heine-Borel
Theorem
3-3 Open cover and compact:
- examples
第13週 12/08,12/10
- compact implies bounded and closed; counterexample
- totally bounded;
- Bolzano-Weierstrass Theorem
第14週 12/15,12/17
- compact iff totally bounded and complete in a metric space
3-4 Path-connected and connected
- path connected implies connected
Chapter 4 Continuous maps
4-1 Continuity
- limit at a point
- continuous at a point and on the whole domain
- continuity defined by sequential limits
第15週 12/22,12/24
- continuity characterized by preimages of open and closed sets
- continuity for +,-,?,?, and f(g(x))
4-2 Images of compact and connected sets
4-3 Real-valued functions
- Maximum-minimum theorem
- Intermediate value theorem
4-4 Uniform continuity
第16週 12/29,12/31
Chapter 5 Uniform convergence of functions
-Motivations
5-1 Pointwise and uniform convergence
- examples
- uniform convergence implies pointwise convergence
- uniform convergence iff sup ρ(f_k,f) → 0
- Theorem: The limit function of an uniformly convergent sequence
of continuous functions is continuous.
5-2 Cauchy criterion and M test
- Cauchy criterion and uniform convergence
- examples: uniformly convergence of series of functions
第17週 1/05,1/07
5-3 Integration and differentiation of sequences and series of
functions
- Theorem: uniform convergence implies convergence of the
integrals
- Theorem : pointwise convergence of the functions and uniform
convergence of their derivatives together imply differentiability of
the limit function
5-4 The space of continuous functions
- completeness property
- equicontinuity
- Arzela-Ascoli Theorem
第18週 1/12
Final Exam
(這些是 Ceiba 上寫的)
Ω 私心推薦指數(以五分計) ★★★★★
老師:★★★★(有趣老師)
喜歡看鬼滅:-★★★★★(老師說國中生才看鬼滅)
整體:★★★★
η 上課用書(影印講義或是指定教科書)
1. Jerrold E. Marsden and Michael J. Hoffman, Elementary Classical Analysis, 2
nd Edition
2. Walter Rudin, Principles of Mathematical Analysis (International Series in
Pure and Applied Mathematics), McGraw-Hill Education; 3rd edition
3. Mathematical Analysis. Second Edition. Tom M. Apostol.
4. William R. Wade, An Introduction to Analysis, Prentice Hall, 4th Edition
μ 上課方式(投影片、團體討論、老師教學風格)
都寫黑板,老師超有趣,可以去查俊全語錄,但常常遲到,可以睡晚一點XD 。其他就,
我覺得老師很神,上課每次的證明好像都記在腦子裡,好像沒看過他帶任何筆記,每次都
只有帶咖啡#
σ 評分方式(給分甜嗎?是紮實分?)
1. homework and quiz 25%
2. midterm exam 35%
3. final exam 40%
我覺得是扎實分,期中平均78,期末平均49,但應該是有調分的。
ρ 考題型式、作業方式
考題我放在考試版了,會考上課證明跟作業,考前一週上的內容也是必考。BTW, 期中超
簡單,但期末直接大暴死QQ,不知道是不是每屆都這樣,你各位自己注意啊。
作業大概 2/3 簡單、1/3 難,每週大概會花4-5小時寫作業,有時候更久。
ω 其它(是否注重出席率?如果為外系選修,需先有什麼基礎較好嗎?老師個性?
加簽習慣?嚴禁遲到等…)
一起寫在總結OuO
Ψ 總結
我覺得是外系的要想清楚,自己為啥要修這門課吧,我當初是想了解一些,常在論文中看
到的名詞跟概念。一學期下來雖然有學到,但其實我覺得有點不合時間成本,如果只是要
了解那些概念,自己去看書可能會比較快,但不可否認地,上課還是學到很多,算是有其
他意外的收穫,例如:找 bound 的技巧、norm的一些等價概念......。總之,是有收穫
的!
作者: Akkusaii3741 (烤雞好吃)   2021-01-27 02:12:00
欸?!用手機發文 p 幣好少好虧喔QQ
作者: unmolk (UJ)   2021-01-27 05:22:00
不知道這篇rrro會不會回你><
作者: a22735557 (哥的小辣椒)   2021-01-27 07:45:00
期中考平均真高 前年只有及格左右 期末平均也差不多
作者: thenolet (moos)   2021-01-27 08:48:00
俊全分導真甜 羨慕
作者: rrro (小傑)   2021-01-27 22:47:00
我要回什麼啊 XD,告訴你們我修高微得到 71 跟 70 分嗎 XD
作者: alan23273850   2021-01-27 23:13:00
樓上 rrro
作者: Akkusaii3741 (烤雞好吃)   2021-01-27 23:24:00
rrro 成績蠻好的欸xDD
作者: rrro (小傑)   2021-01-28 12:49:00
不高啦,去了 Berkeley 還被老師嫌棄「你高微分數也太低」

Links booklink

Contact Us: admin [ a t ] ucptt.com