我幾年前在mtk演算部門工作過
現在在國立大學工作
個人經驗
在ML這個領域
要能夠不是過水掛名的發表一篇"有深度"的"TOP Journal"
有深度的意思是有數學分析 有創新 有實作 最好是對這領域多少有些貢獻
才是在這個領域算是入門 開始有能力做一些有價值的好東西出來
只是call library的話 clone別人的github套一下data
我們lab大二生 看幾個禮拜我的課程影片就都會了啊 (應該吧?)
當然其他基本功夫 像是 數學 algo "DEBUG"的經驗跟能力
也是很重要 需要一些時間跟經驗來練習
※ 引述《techniclaire (齁齁)》之銘言:
: (本文作者無帳號,協助代po ^ ^~)
: 前文少po段落就送出,因手機一直無法編輯,所以刪文重發QQ
: 大家好,
: 小弟目前在台北某傳產擔任數據分析師,學歷是國立統計所,碩論是做 ML 演算法改良(沒投期刊,我覺得是垃圾),碩班期間有自修 DL。
: 希望能用 DL 找工作,主力程式為 Python。
: 目前剛進去公司半年多,主要負責影像辨識的專案,內容是用 Yolo 進行 real time 的瑕疵檢測,專案目前也已經上線了,因此算是有一些實務經驗。
: 看了蠻多 ptt 上的文,對目前 AI/DL 工作的現況總結如下:
: - 做 DL 的人已經爛大街了,幾乎每個實驗室都在做 AI
: - 想做演算法 / 模型開發的話至少要念到博士
: - 基礎資工能力非常重要,沒人要只會 DL 的人
: - 刷 Leetcode
: 考慮以上、總結目前目標是成為一個「能將現有較新的 DL 方法應用在公司產品上」的工程師,希望將來能到聯發科、瑞昱等一線 IC 設計公司工作。
: 目前我想到的進修方向如下:
: - 持續關注 AI/DL 的發展,了解現在的趨勢,並且參加一些像是T-brain、Kaggle 之類的比賽。
: - 修李宏毅老師的 ML 相關課程,我這學期有跟著寫一些 ML 作業,覺得自己的 Pytorch 熟悉度有提高很多
: - 學 C++ (主要是看到如果模型要應用的話還是得用到 C++,而且有些模型像是 Yolo 也是用 C++ 寫的)
: - 把資料結構及演算法學好,刷 Leetcode
: - 做一個深度學習專案,例如把 Yolo 模型遷入到手機中
: - 增進英文能力,方便吸收國外資源及看論文的速度,有沒有推薦內向人的英文口說學習資料或是補習班。
: - 其他,例如增進簡報能力
: 想請問各位先進,我目前的想法有需要調整的地方嗎(or 打掉重練qq)