題目:
摩爾的學生說了幾個數字,摩爾居然找不到當中最大的那個
==============================================================================
解答在下一頁喔!!!小心不要雷到!!!
★☆警告!本湯底內容~
-包含《Calculus With Applications》中的註解、R. L. Moore 其學生的軼事-
==============================================================================
解答:
摩爾的學生說了兩個數字
但兩個數當中只會有比較大 (larger) 的數,不會有最大 (largest) 的數
原文:The story is told that R. L. Moore, a famous mathematician in Texas,
asked a student to give a proof or find a counterexample to
the statement "Every bounded set of numbers has a largest element."
The student came up with a counterexample: the set consisting of
the numbers 1 and 2; it has a larger element, but no largest.
出處、作者:皮皮採擷自 Peter D. Lax 與 Maria Shea Terrell 所著的
《Calculus With Applications》
備註:英文在比較三個以上的事物時,才會使用最高級
另外,該敘述確實是有反例的,如 empty set 或 {-1/n: n∈N} 等 (已關燈)
標籤:#誤導 #知識 #趣味