代po
關於AI人工智慧(或者說機器學習)我不是甚麼專家,應該說我是外系(電資學院)因為好奇
所以才開始學習這個領域的。每個人的對新的東西學習方式不同,但對一些不知道要從哪
裡著手的初學者或許可以參考一下我剛開始學習的切入方式。最開始我決定去修台大一堂
李宏毅老師開的機器學習的課,這門課的特色是用很淺顯易懂的方式去介紹這個領域,所
以數學的部分會少一點。每學期大約400人修課,而且來自各個系所,老師也把上課內容
全部公開在youtube上,下面是這門課的連結。
https://goo.gl/y8t31F
因為這堂課以實作為主,所以當初修的時候要邊上課邊寫code,怕忘記所以還花了點時間
對youtube公開課程整理了簡易筆記,下面是筆記的連結。
https://goo.gl/snybe8
修課的學生來自各個系所,我覺得不是因為這是一個新的領域,而是因為這個領域在近幾
年有不少新的重大突破,而且快速的正在影響各個領域的產業。同意有人說不管哪個領域
都要學些AI的知識,不過對於不同領域可以用不同方式去學習,下面僅只是一些我個人的
看法。
非工程相關背景
如果是非工程相關背景可以參考下面的見解。在之前一場微軟舉辦的演講有講者提到:「
現在機器學習正在影響各個領域,對於一家公司來說,新技術的出現代表著管理階層的秩
序需要因應而有所改變。」所以我覺得非工程背景也可以了解下這個領域,也許不一定要
會寫code。建議只需花不到一個禮拜的時間把上面youtube連結的前幾堂課程大概看過就
可以了。這樣至少會知道為什麼要train model、為什麼要很多data、為什麼training那
麼花時間、甚麼是深度學習...等,這樣也比較不會跟著大家一起喊人工智慧卻不知道那
個東西到底是指甚麼。另外,可以加一些FB的社團,這裡推薦:台灣「人工智慧」社團,
這是個最近很活躍的社團,常常會有些業界人工智慧的新應用、產業發展趨勢...等等的
文章出現。
工程相關背景
如果是工程相關背景可以參考下面的見解。其實要介紹的大概就是李宏毅老師上課用的一
些tool,所以如果是李宏毅的學生可以直接略過下面XD。我覺得一開始可以先學一些深度
學習(deep learning)的套件好比說Keras,他是一個建立在Theano或Tensorflow上層的
API,語法簡單,適合初學者。如果想去做一些更底層的更動可以再去了解Theano或
Tensorflow,因為常常在Github上要用別人的code才發現都是用Tensorflow寫的。此外,
因為這些東西大多是用Python的語法,所以可以花些時間了解一下Python。下面是我針對
Python的語法整理的筆記,語法可能會因為改版更動,所以可能要自己實際執行看看喔。
https://goo.gl/snybe8
另外,我覺得可以了解Kaggle,它是一個數據分析的競賽平台。李宏毅老師就是用Kaggle
這個平台讓大家寫自己的code,對我來說蠻有用的。因為看到自己在Kaggle上的排名一直
往上爬就會有股衝動想要找更好的演算法讓排名繼續往前!也因為Kaggle讓我願意上網找
一些近幾年的paper看看其他人對於這個問題的解決方法等等。希望有興趣的人能養成讀
paper的習慣,因為這個領域不斷有新的東西,而新東西只會出現在paper裡而不是教科書
上。而且如果要找paper的話能找在Github上有code的會更好,這樣可以直接實作驗證看
看。推薦一個網站給大家,裡面彙整了機器學習中每個部份的重要paper。
https://goo.gl/3xEN7T
另外,我覺得可以加一些FB的社團,這裡推薦:台灣「人工智慧」社團,這是個最近很活
躍的社團,常常會有些新演算法的paper、讀書會、人工智慧硬體晶片的新突破...等等的
文章。最後,對於外系來說,我覺得這個領域其實不用學的太深,因為很多東西都已經被
內建好了,也有不少人性化的雲端訓練平台例如: Microsoft Azure、Google AutoML...
等等。反而比較重要的應該是想想如何用自己領域的專業知識(Domain Knowledge)結合人
工智慧找出現在還沒有人想到的新應用然後馬上付諸行動!