※ 引述《GLP (^__________^)》之銘言:
: 求曲面 xy=z 及兩平面 x+y+z=1, z=0所夾部分之體積
這題不需要硬算
改個方向 懂得化簡
過程可以變得很簡單
先算y = 0, x = 0, 曲面xy = z, 平面x + y + z = 1所包含的體積
1 - x - y = z = xy => x = (1 - y)/(1 + y)
1 (1 - y)/(1 + y)
∫ ∫ [1 - x - y - xy]dx dy
0 0
1 (1 - y)/(1 + y)
= ∫ { (1 - y)x - (1/2)(1 + y)x^2 [ } dy
0 0
1
= ∫ (y - 1)^2/(y + 1) - (1/2)(y - 1)^2/(y + 1) dy
0
1
= ∫ (1/2)[(y + 1) - 4 + 4/(y + 1)] dy
0
= (3/4) - 2 + 2ln2
= -5/4 + 2ln2
所以體積 = 1/6 + 5/4 - 2ln2 = 17/12 - 2ln2