[試題] 103上 陸駿逸 化學數學 期中考

作者: Waphiphop (瓦飛帕)   2014-11-12 21:26:27
課程名稱︰化學數學
課程性質︰必修
課程教師︰陸駿逸
開課學院:理學院
開課系所︰化學系
考試日期(年月日)︰2014.11.12
考試時限(分鐘):10:20~12:10
是否需發放獎勵金:是
(如未明確表示,則不予發放)
試題 :
Midterm Examination of Mathematics for Chemists
1.(40%) ┌ ┐
│ 3/2 -1/2 │
Let A=│ │
│-1/2 3/2 │
└ ┘
(a)Find the normalized eigenvectors │e1>,│e2>, and the corresponding
eigenvalues λ1,λ2.
┌ ┐
│ 1 0 │
(b)Show that │e1><e1│+│e2><e2│=│ │=I
│ 0 1 │
└ ┘
(c)Calculate A^10 and cos(πA).
(d) ┌ ┐
│ f1(t) │
Let ψ(t)=│ │which satisfies
│ f2(t) │
└ ┘
┌ ┐ ┌ ┐
d │ f1(t) │ │ f1(t) │
─ │ │=iA│ │
dt │ f2(t) │ │ f2(t) │
└ ┘ └ ┘
┌ ┐
│ 1 │
and the initial condition ψ(t=0)=│ │. Find ψ(t).
│ -1 │
└ ┘
2.(15%)Let │a> and │b> are two eigenvectors of a real, symmetric matrix
B. Suppose that they have different eigenvalues λa≠λb, show that │a>
and │b> must be orthogonal.
3.(15%)Given a basis a, b, c of R^3, where a=(1,1,0), b=(1,0,1), c=(0,0,1)
, use the Gram-Schmidt process to construct an orthogonal basis.
4.(15%)Given f(x,y)=x^2-xy where x and y are related by the constraint
x^2+3y^2=1. Find (x,y) and f(x,y) where f(x,y) becomes minimal or maximal.
5.(15%)Let A be a hermitian matrix. Show that e^(2iA) is unitary.

Links booklink

Contact Us: admin [ a t ] ucptt.com