課程名稱︰工程數學-線性代數
課程性質︰必修
課程教師︰馮世邁
開課學院:電機資訊學院
開課系所︰電機系
考試日期(年月日)︰2018/05/23
考試時限(分鐘):09:20-10:10 (最後多延長5分鐘)
試題 :用右上角的*表示向量,及課本/上課的粗體
1. — —
| 1 -2 2 |
A = | 8 11 -8 |
| 4 4 -1 |
— —
(a)(15%)Find the characteristic polynomial of A.
(b)(10%)Find all the eiganvalues of A and the multiplicity of each eiganvalue.
(c)(15%)Find a basis for each eiganspace of A.
(d)( 6%)Find and invertible matrix P and a diagonal matrix D such that
A=PDP^(-1)
(e)( 4%)Find the characteristic polynimail of A^(-1).
2. Let V = Span { u1* , u2* , u3* }, where
— — — — — —
| 1 | | 1 | | 3 |
u1*=|-1 | u2*=| 1 | u3*=| 1 |
| 0 | | 1 | | 1 |
| 2 | | 3 | | 5 |
— — — — — —
(a)(20%)Find an orthogonal basis { v1*, v2*, v3* } for V.
(b)( 6%)Find an orthonormal basis {w1*, w2*, w3* } for V.
(c)( 9%)Let v* = [ 4 2 1 5 ]^(T) be a vector in V.
Express v* as a linear combanation of v1* v2* and v3*.
3.Let A be a 3x3 matrix with characteristic polynomial -t^3+p2t^2+p1t+p0
(a)(5%)Prove that A^T have the same characteristic polynomail as A.
(b)(5%)Find the characteristic polynomial of -A.
(c)(5%)Find the characteristic polynimail of A^2.