[試題] 108-2 蕭浩明 工程數學下 第一次期中考

作者: heng31029 (俺是耕田的)   2020-05-01 19:17:54
課程名稱︰工程數學下
課程性質︰必修
課程教師︰蕭浩明
開課學院:工學院
開課系所︰機械系
考試日期(年月日)︰2020/4/29
考試時限(分鐘):60
是否需發放獎勵金:是
試題 :
1.(a) Expand f(x) = ∣x∣, ∣x∣≦ π, in a Fourier series.

(b) Use the result from (a) to find Σ 1/(2k-1)^2
n=1
2.Given the generating function for Legendre polynomials

1/(1-2xt+t^2)^0.5 = Σ Pn(x) t^n
n=1

express Σ Pn(cosθ) as a function of csc(0.5θ), 0<θ<2π.
n=0
sin(x), ∣x∣≦π
3.Use the Fourier integral to express f(x) = {
0 , ∣x∣>π

in terms of the integral ∫ g(α,x) dα.
0
∞ 1
4.If f(x) = Σ AnPn(x), derive its own Parseval's identity ∫ [f(x)]^2 dx
n=0 -1
in terms of An and n. Pn(x) are Legendre Polynomials.

Links booklink

Contact Us: admin [ a t ] ucptt.com