[問題] 用induction證明無向圖必有一點為non-cut

作者: jvvbn0601 (part2)   2013-10-30 21:14:06
For an undirected graph G=(V, E) and a vertex v in V, let G\v denote the
subgraph of G obtained by removing v and all the edges incident to v from G. If G is
connected, then G\v can be connected or disconnected. Prove that for any connected graph G,
we can always find a vertex v in G such that G\v is connected.
目前我的想法是1)沒有迴圈:視為樹,leaf必定是non-cut
2)有迴圈:有迴圈的話,degree不是最大的應該都可以是non-cut?
請問一下,我的觀念是否有錯?
還有如何用數學歸納法證明呢?
作者: LPH66 (-6.2598534e+18f)   0000-00-00 00:00:00
_△∠ 左邊應該是你的 2) 的反例: deg 3 那點拿掉照斷
作者: rebaudiana (微甜)   0000-00-00 00:00:00
2) 點雙連結?啊…沒事
作者: springman (司布林)   2012-01-03 17:01:00
若是沒有 cycle 的話,找一條最長的 path,它的兩個端點都是 non-cut。就算是有 cycle,似乎也是如此。證明應該很簡單,最長的 path 的端與不在 path 上的點一定不相鄰,不然該 path 就不是最長的,所以是 non-cut所謂的最長應該是 maximal length、不是 maximum length

Links booklink

Contact Us: admin [ a t ] ucptt.com