"為什麼現在新的深度學習模型都很少割出test dataset?"
在進行實驗的時候,
發現近三年來的研究工作,
很多都沒有切割test dataset,
論文裡也沒有列出test dataset的實驗結果.
反而都直接以validation dataset包含test dataset.
比例也從以往常用 train:val:test = 8:1:1 (7:2:1)
變成 train:val = 8:2
很多學校裡的指導教授還是要求要使用8:1:1這個鐵比例.
為什麼現在新的深度學習模型都很少割出test dataset?
這些新模型其實只是舉手之勞就可以做這到件事,
而且按照指導教授的要求,
論文裡要是沒有test dataset的實驗結果,
應該是不能被刊登.
不得其解...
大大們可以詳細說明解釋這個原因嗎?
還有,
想知道指導教授的堅持是對的嗎?
先謝謝各位深度學習的高手~