換我接著來update,謝謝當年Chill人很好的回答了我的問題
有問題歡迎在下面留言,盡量不要私信我問題,一來是我信箱爆了,再來是我希望我的回
答,能幫助到所有的人,六月畢業前我會定期上來回答問題,之後就不知道什麼時候才會
再上ptt.另外,如果你有爬一畝三分的話,要自己辨識裡面的資訊,有時候只是他們從其
他人的回答推論,不見得是他們自己的體會或真實的情況.
我是2017入學,我們這屆有兩個台灣人,接下來一屆一個台灣人都沒有QQ.系上七樓有
個世界地圖,每個人會把自己從哪來來貼上貼紙,韓國都有兩三個了,台灣一個貼紙都沒
有.
幾點總結這個program:
1. 結合了數學與碼model,專注在deep learning領域,培養data scientist
2. 每年都在擴招,但申請也越來越激烈.如果你想知道一些確切的數字,寫個信跟小蜜
要,她的工作就是回答你的問題
3. 有自己的phD program.我覺得這是個很強的signal,表示長遠來說,系上對自己還有
這個領域的未來很有信心,畢竟養phD短期都是賠錢,而且一養就是養4,5年
4. 寫而且幾乎只寫python,所有課都要寫,就算是上spark也是用上pyspark,建deep
learning就是用pytorch
[簡介DS]:
data science的工作廣義大致可以分成三種,
1. data analyst: 有時候會稱作BI,分析居多.最多工作缺.
2. data scientist: 做machine learning和deep learning,建model,有時偏
research,我自己會把machine learning engineer歸在這裡
3. data engineer: 涉略不深,有時候跟big data有關,也可以是SQL撈資料,
很看公司跟職位,建議讀CS
要注意的是,職位名字不能決定工作內容,有時候工作data scientist做的是data
analyst的事,每個公司給的titile跟工作內容不一樣
[CDS簡介-Center for Data Science]
2016大概80人,去年2017招了100人,這屆2018的full time大概招到130.每年穩定成長
,不知道什麼時候會爆炸.我剛來的時候系上有兩層樓,很多空房間可以進去自習,現在
都把空間給phD還有訪問學者,相對來說壓縮了原本master學生的空間.系上對學生另一
個好的地方是24hr你都可以自由進去系上的那兩層樓.相對來說courant cs就只把這種特
權留給他們的phD學生.你什麼時候想去自習都可以,包含暴風雪學校沒開,半夜看完百
老匯,2點想唸書,期中考學校圖書館爆滿(但是不代表系上那邊會有位置),你都可以刷
你的學生證自由進出,整個CDS就是你家.
[課程]
我簡介一下必修:
第一學期有兩個必修,一個會教你數學工具像是probability等,這工具下學期上
machine learning會用到,另一個是Data Science101,當下覺得是廢課,但回首看這堂
課很重要也上得很好,會過一次terminology,對Data Science很多topic會有個簡單的了
解,如果覺得自己缺其他數學工具像是線性代數,可以去選選修,不會寫python可以上
python for Data Science補一下.一年級下學期會上machine learning,這是這個
program最核心的課也最好的課,另一門big data會教map reduce還有spark,上的東西非
常多,很快速的把知識點帶過.第三學期會有一門課capstone,這是集大成把你所學的,
應用做一個project.然而在最後post時,我發現所有的組都在做deep learning,沒有
machine learning,沒有big data,沒有data visualization等等.我覺得蠻失望的,其
實這領域還有很多議題跟方法可以探究,deep learning是現在的顯學.
我們自己開的課不多,每學期大概三到四堂,所有ds的學生都有優先權可以選,二年級的
先,再來是一年級,phD最後選但是優先權最高,會直接把其他人往後擠掉XD.每學期我
們自己開的課夠多,所以不會有沒有課能選的問題,但想不想上又是另一回事了.課絕大
多數都跟deep learning有關,集中在數學理論跟NLP上,如果對image有興趣要自己去CS
修課,但我看今年秋季課表有開image的課.
[教授]
如果你是phD,那我覺得這裡研究環境不錯,我想不需要跟你介紹Yann Lecun與
Kyunghyun Cho是誰.如果你是master有考慮想申phD,想找他們做研究,那你要給他們非
常好非常好的理由,因為全世界的學生都在找他們一起做研究.office hour外排隊的學
生很驚人,還有被他釘白版的回憶....如果你覺得你來這裡念master可以幫助你比較順
利申請到我們自己的phD,我持保留態度,目前為止,我沒看到我們這一屆有人成功,前
幾屆有,我自己思考一下,可能我們這屆的人儘管非常聰明,但過去這兩年並不專注在
reseach上,在申phD跟找工作上比較搖擺不定,所以沒有比較強的研究結果.系上是有研
究風氣的,每個禮拜都有各式senimiar可以參加.星期四下午固定有nlp talk.
[程式]
我們寫python,也只寫python.沒有任何其他的語言(只有ㄧ門課用R做text,但是沒人想
選)或軟體(SAS).一旦跟deep learning有關,我們就是用pytroch,我想跟韓法二人組在
facebook應該是有關.我被錄的時候本來就會一點python,如果不會系上有門課python
for data science,不是教你怎麼寫python,是教你ds有關的python怎麼用,例如pandas
,scikit learn,我蠻後悔沒有上,看起來像廢課,但其實“認真學”很有幫助,很多人
都把它當水課沒有認真上,其實python認真學起來是有很多知識要學的!自己是暑假大量
自學pandas,,scikit learn,但同一時間,同學早知道怎麼用了.如果想真的好好學會
python,你要自己去學.我自己是有興趣去多學,大部分的同學都是只要code work就好
,很多時候後不深究,其實對python的掌握度不是很高.但是掌握很高對Data Scientist
要幹嘛?對很多人來說鑽研python也不會幫助你的model accuracy上升,還不如對model
了解更透徹.
[選課自由]
你如果選不是elective清單上的課,需要得到系上核可.只要你能提出這課跟data
science與你的職業生涯有關,都會被核准,非常非常自由.例如,你可以去音樂系選課
或甚至選藝術的課,只要跟ds有關都可以.但是系上核准你可以選,不代表你選得上,選
不選得上是由對方的系決定.
[系上資源]
每個禮拜五,有些時候會是workshop,教你怎麼面試,怎麼用julia等等,大部分是
company infosession,公司來介紹他們自己並順便招intern或full-time.每個學期會有
一次比較大型的career fair,會有七八家公司來.這是系上用心的地方.但大多數人的
實習跟工作還是自己找的.有時候會寄open position的資訊還有post在自己非公開的
piazza社團,除非是alumni主動來要人,不然其實跟你自己google找是一樣的,只是多一
個人你找而已.
另外,我們有自己的library,藏書不多但都是很好很經典的書,都是被挑過的,跟data
science有關的書籍,想要的話可以透過線上系統借.像是fluent python這種好書,當我
發現系上有可以借的時候,對他們的眼光另眼相看.如果是要找地方借房間開group
meeting或是面試,除了跟nyu library借房間,也可跟系上預約,大概有6間房間是可以
預借的.很方便.
[找實習或找工作]
實習:我覺得很難找,但你永遠都可以退而求其次,找不到回國找,找不到改作unpaid,
找不到改幫professor做research.我沒有聽說想找的人,會找不到的.身邊抽樣來看,
大概一半能找到很正式的intern,其中有很少數是我們叫得出大公司,大部分都是紐約中
小型企業,另一半就是所所謂的退而求其次.
正職:我還是覺得很難找.我的感受是80%的面試與offer都發生在20%的人的身上,剩下
80%的人搶20%的機會,大家壓力都很大.雖然我的感受是工作很難找,但我把身邊認識的
人數了數,距離畢業還有一個月,其實已經有大概快8成的人找到了.當然,裡面包含
了打算回國的人,有的是因為個人因素,有的是他們國內的公司對他們言發展比美國好,
其他留下來的這些,公司大大小小都有.往前看過去幾年的學長姐,其實沒有想留下來
的人留不下來,就看你的決心有多少,你願意犧牲多少?如我前面所說的,你永遠可以退
而求其次.
[補充一下] 我聽説有收到fu[Bll time offer的公司(我相信還有很多人拿到其
他公司的offer,只是我比較邊QQ,大概就認識20個人): Black Rock, Morgan Stanley, Nvidia,
DiDi Lab, Alibaba, Bloomberg(Hong Kong), TripAdvisor, BuzzFeed, Capital One,
Apple, Amazon, Google, PWC, Wayfair
另外我想提一下,選學校地點其實在一個時候會扮演很重要的角色.就是當你找不到大公
司的實習或工作的時候.local的start up與中小企業的類型跟數量多少個會很重要.大
公司不會管你住的地點,住遠住進都一樣,可是很多start up與中小公司會,他們傾向找
當地的人,當地的人比較有機會有connection知道這種缺,有時候你甚至可以被直接被內
推.如果你一帆風順的話,大概不會有機會體會到地點的重要.
[最後]
我想感謝在地球另一端的家人,朋友,給我如大海般的包容和無盡的支持.
謝謝我的室友,CS的台灣同學們,DS的中國同學們(雖然你們大概永遠不會看到),還有學
長學姊學弟.
沒有你們,我真的不知道是怎麼熬過這些煎熬與苦澀,我愛你們.
在紐約的這兩年,真的很苦,媽的.