乾脆開一篇好了,抱歉應該是叫做怪獸月光猜想,以前我不知道月光但是我知道怪獸
http://en.wikipedia.org/wiki/Monstrous_moonshine
但是最讓我驚訝的是CFT竟然把數學我覺得永遠不會跟物理連在一起的全部串起來
當然我自己知道吾生有涯,學海無涯的道理,這一切真的是蠻神奇和有趣的
但是我不知道這些是不是真實的物理,因為楊振寧也說過類似太漂亮的數學也不一定是
有物理意義的(我記得當時他是在評論有人問為什麼他不做弦論的物理)
我大學念數學只知道有限單群分類是20世紀數學最偉大的工作之一,有一個群
叫做怪獸群(monster group)
http://w3.math.sinica.edu.tw/math_media/d354/35403.pdf
當時我們某個代數老師嘴砲說數學家她覺得最聰明的群論學家叫做John Conway
http://en.wikipedia.org/wiki/John_Horton_Conway
因為他做了一件偉大的事情但可惜沒拿費爾茲獎
http://en.wikipedia.org/wiki/Conway_group
History
Thomas Thompson (1983) relates how John Leech about 1964 investigated close
packings of spheres in Euclidean spaces of large dimension. One of Leech's
discoveries was a lattice packing in 24-space, based on what came to be
called the Leech lattice Λ. He wondered whether his lattice's symmetry group
contained an interesting simple group, but felt he needed the help of someone
better acquainted with group theory. He had to do much asking around because
the mathematicians were pre-occupied with agendas of their own. John Conway
agreed to look at the problem. John G. Thompson said he would be interested
if he were given the order of the group. Conway expected to spend months or
years on the problem, but found results in just a few sessions.
Witt (1998, page 329) stated that he found the Leech lattice in 1940 and
hinted that he calculated the order of its automorphism group (the double
cover of Conway's largest simple group).
這一切竟然可以從Kepler的最密堆積開始說起,也就是CFT的代數幾乎無所不包
我當然知道純代數內容無論是深度廣度都是很恐怖的
Gauss定義一個東西叫lattice,最有名的是Leech lattice,這可應用用在編碼學上面
http://en.wikipedia.org/wiki/Leech_lattice
這裡面有一個Havard史上最年輕的26歲正教授Noam Elkies做一個很轟動的結果
http://en.wikipedia.org/wiki/Noam_Elkies
Noam Elkies是一個著名數學家,音樂學家和象棋學家
八卦是
有哈佛的鄉民或是數學系知道這位Noam Elikes教授其他的八卦嗎?XD