[試題] 105-2 林惠雯 代數二 第一次小考

作者: Mathmaster (^_^)   2017-06-25 15:10:00
課程名稱︰代數二
課程性質︰數學系選修,可抵必修代數導論二
課程教師︰林惠雯
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰2017/3/20
考試時限(分鐘):50分鐘
試題 :
1. Do one of the following problems.
(a) Let f(x) ∈ K[x]. Prove that a splitting field of f(x) over K exists and
is unique up to isomorphism.
(b) Let K be a field. Prove that an algebraic closure of K exists and is
unique up to isomorphism.
(c) Let K ⊂ M ⊂ L be a tower of fields. Prove that L/K is a separable
extension if and only if both L/M and M/K are separable extensions.
3
2. Determine the Galois group G of the polynomial x +2 over Q and the
correspondence between subgroups of G and intermediate fields between Q and
3
the splitting field L of x +2 over Q.

Links booklink

Contact Us: admin [ a t ] ucptt.com