[試題] 106-2 翁秉仁 線性代數二 期中考

作者: newnew1231 (妞妞)   2018-04-25 22:55:02
課程名稱︰線性代數二
課程性質︰必修
課程教師︰翁秉仁
開課學院:理學院
開課系所︰數學系
考試日期(年月日)︰2018/04/25
考試時限(分鐘):110 分鐘
試題 :
1. [20%] Compute the determinant of the following A_n∈S_n over C.
┌ 1 i 0 ... 0 0 ┐
| i 1 i ... 0 0 |
| 0 i 1 ... 0 0 |
A = | . . . . . . |
| . . . . . . |
| . . . . . . |
| 0 0 0 ... 1 i |
└ 0 0 0 ... i 1 ┘
2. [20%] A∈S_3. It is know that there are 3 linear independent vector
u, v, w such that
Au = u - v - w
Av = 6v + 8w
Aw = -4v - 6w
Is A diagonalizable? Find the corresponding eigenspaces in term
of u, v, w.
3. [20%] Consider k vectors v_1, v_2, ... ,v_k∈R^n and
A = [v_1 v_2 ... v_k]∈M_nxk. Show the k-volume of parallelpiped (平行
超多面體) span by v_1, v_2, ... , v_k∈R^n is equal to √(detA^tA).
4. [20%] A∈S_n, λ_1, λ_2, ... , λ_k are all distinct eigenvalues of A.
Show that
1 ≦ g(λ_i) ≦ a(λ_i), ∀i = 1, ... ,k
5. [30%] Prove the following statements:
b. [10%] If W is A^t-invariant subspace of R^n, show that W^⊥ is
A-invariant
c. [10%] If f_A(t) split (i.e. all eigenvalues are real), show that there
is an (orthogonal) matrix S, such that S^(-1)AS = Γ, where Γ
is an upper triangular matrix.
d. [10%] Using c. to give another proof of Cayley-Hamilton theorem in
this case. (Or assume c. in C, and prove general case).
______________________________________________________________________________
常用記號或名詞
a. M_nxm is the space of nxm matrices; S_n = M_nxn
b. i = √(-1)
c. E^A_λthe λ-eigenspace of A. If there is no confusement, E_λis uesd.
d. g(λ) = dimE_λ

Links booklink

Contact Us: admin [ a t ] ucptt.com