※ 引述《nafranicolie (哦哦哦哦哦)》之銘言:
: 1.年級:小學
: 2.科目:數學
: 3.章節:競賽題
:
: 4.題目:
: 莧、B、C三組進行比賽,每組各有3個人,每個人都需和別組的每一人進行一對一比賽。今比賽進行到一個段落發現A組的三個人比賽場數相同,另外兩組的人比賽場數皆不同。請問A組選手一個人比賽幾場?
: 5.想法:
: 從B、C兩組人的場數著手,0到6要選6個數字。
: 456三個數字一定要選兩個,BC組只要比超過3場必有跟A對戰,故A不會比0場。
: 若A比1場,必定是捨棄6,此時5跟0跟4要在同一組,但是BC組就沒有辦法有一人比1場了。
: A比2場跟3場的我有構造出來。
: 有比賽與沒比賽的場數相加為6,A組比賽4或5或6場的是前面比2或1或0場反過來的情況。
: 想請問各位有沒有更有系統的想法(我覺得有點難跟學生解釋)或是我這個想法是否有誤(因為我也沒有解答),感謝大家
: