[試題] 102下 薛克民 應用數學方法 期中考

作者: t0444564 (艾利歐)   2014-04-26 12:52:00
課程名稱︰應用數學方法
課程性質︰數學系選修、數學研究所選修、應用數學科學研究所選修
課程教師︰薛克民
開課學院:數學系
開課系所︰理學院
考試日期︰2014年04月24日(五),15:30-17:30
考試時限:120分鐘
是否需發放獎勵金:是
試題 :
National Taiwan University Spring Semester, 2014
MATH 7421 Method of Applied Mathematics
                 Midterm
Date: 15:30-17:30, April 24th, 2014
 .Open Books
1. (40 points) Consider an algebraic equation of the form
             4
            x - εx - 1 = 0
  for x, where ε in R is a parameter.
  (a) (20 points) Suppose that ε<<1, find approximate expressions, correct
    to terms of O(ε), for each of the four solutions of the equation.
  (b) (20 points) Suppose that ε>>1, find the leading order (non-zero)
    approximations for all four of the solutions. In addition, find a more
    accurate approximation to the smallest root in this case.
2. (20 points) Verify that
            1
           ∫exp[-x*cosh(t)]dt ~ (2π/x)^(1/2) * exp(-x)
           -1
  as x →∞.
3. (40 points) Consider an integral of the form
                   ∞ ixt     2 -x
              I(x) = ∫ e   (1 + t ) dt
                  -∞
  for x in R.
  (a) (10 points) Find the function ψ(t) so that I(x) can be rewritten in
    the following form
                    ∞ xψ(t)
                I(x) = ∫ e   dt.
                    -∞
  (b) (10 points) Determine the steepest descent path.
  (c) (20 points) Find asymptotic approximation of I(x) as x → ∞.

Links booklink

Contact Us: admin [ a t ] ucptt.com